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The Common Core Standards require demonstration of conceptual knowledge of numbers,
operations, and relations between mathematical concepts. Supplemental instruction should
explicitly guide students with specific learning disabilities (SLD) in these skills. In this article,
we illustrate implementation of the concrete-representational-abstract (CRA) sequence and
the Strategic Instruction Model (SIM) for teaching multiplication with regrouping to students
with SLD. CRA combined with SIM has been shown to be effective in teaching computation
for students with SLD, specifically for developing conceptual understanding. Four elementary
students with SLD participated in this study. The researchers used a multiple-probe design to
show a functional relation. Students demonstrated increases in computational fluency; skills
were maintained and generalized.

The importance of mathematics achievement is indisputable
and highlighted by multiple reform efforts across the country
over the past two decades. These reform efforts have focused
on improving mathematics achievement in the United States
throughout the school-age years. One result of these reform
efforts is the development of the Common Core State Stan-
dards (CCSS). The CCSS have currently been adopted by 45
states, the District of Columbia, four territories, and the De-
partment of Defense Education System (National Governors
Association Center for Best Practices & Council of Chief
State School Officers, 2010).

The CCSS outline grade-specific expectations for students
and serve as a guide for teachers to follow when planning
their instruction in core academic areas. The focus of the
CCSS in mathematics standards is conceptual understand-
ing, although procedural knowledge and fluency are also
seen as important (National Governors Association Center
for Best Practices & Council of Chief State School Officers,
2010; Porter, McMaken, Hwang, & Yang, 2011). For exam-
ple, fluency in basic operations and procedural knowledge
are necessary in the development of mathematical thinking
and conceptual understanding of the basis of numbers and
operations in order to explain why particular operations or
procedures are used to solve a problem. The CCSS focus on
a deep understanding of how to complete operations, under-
standing relationships between operations and articulation
of how operations are completed. Because a majority of stu-
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dents with mathematics difficulties are expected to master the
mathematical practices included in the CCSS, it is important
to recognize common difficulties students with specific learn-
ing disabilities (SLD) in mathematics experience in order to
differentiate instruction.

Students who have SLD in mathematics or who have poor
mathematics achievement may struggle to meet the concep-
tual focus of the CCSS due to their learning characteristics.
Difficulties experienced by students with SLD include or-
ganization of information, understanding and using learning
strategies, acquiring basic computational skills necessary for
higher order mathematics operations, connecting new mate-
rial to previously learned material, solving word problems,
and communicating about mathematic processes (Doabler
et al., 2012; Garnett, 1987; Garnett, 1998; Geary, 2004;
Hudson & Miller, 2006; Jitendra, 2013; Mancl, Miller, &
Kennedy, 2012).

Although the CCSS provide instructional objectives for
teachers to use for planning, they do not include di-
rections or activities to facilitate instruction in the stan-
dards. Therefore, it is up to teachers to design and imple-
ment lessons that meet the needs of all students, includ-
ing students with poor mathematics performance and/or
SLD. Current research on effective mathematics instruc-
tion identifies several effective strategies for students who
have mathematics difficulties (Hudson & Miller, 2006;
Miller, Stringfellow, Kaffar, Ferreira, & Mancl, 2011; Pe-
terson, Mercer, & O’Shea, 1998). One strategy is the
Concrete-Representational-Abstract (CRA) approach. This
approach provides explicit instruction and emphasizes
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conceptual understanding as recommended by the National
Mathematics Advisory Panel (2008). The CRA approach is
different than other general education conceptual models of
instruction such as the use of area models (Van de Walle,
Karp, Lovin, & Bay-Williams, 2010) which use manipula-
tives and show the operation by filling an area with base-ten
manipulative blocks. CRA fills the gap between conceptual
understanding of the overall operation (accomplished with
area models) and the shortened widely accepted algorithms
used to solve computation problems. CRA bridges this gap
by teaching algorithmic procedures using manipulatives and
drawings, and by eventually fading these aids until students
solve problems fluently using numbers only. CRA provides
students with tools to show and describe how operations are
completed within a base-ten number system which is consis-
tent with the CCSS related to conceptual understanding.

The theoretical underpinnings of CRA are the Stages of
Representation (Bruner & Kenney, 1965). These sequenced
stages include learning through action and manipulation of
objects (enactive), learning through pictures (iconic), and
learning through symbols (symbolic). Accordingly, CRA in-
volves the following three instructional phases. First, the
concrete phase involves explicit instruction using manipu-
latives to represent numbers. The teacher models the skill
with the use of manipulatives and provides opportunities for
guided practice and independent practice. Next, during the
representational phase, the teacher uses the same instruc-
tional sequence using pictures to represent numbers instead
of the manipulatives. Finally, during the abstract phase, the
teacher and students complete problems using numbers only
and the emphasis is automaticity and fluency using numbers
only.

CRA has been combined with the Strategic Instruction
Model (SIM), a method that includes explicit instruction and
emphasizes procedural knowledge. The addition of SIM pro-
vides further scaffolding in moving from iconic understand-
ing to symbolic understanding (Bruner & Kenney, 1965). The
combination of CRA-SIM addresses learning deficits com-
monly demonstrated by students with disabilities, including
difficulties with organization of information and poor access
or utilization of long- and short-term memory (Deshler &
Hock, 2006).

Several studies have shown that CRA combined with SIM
(CRA-SIM) is an effective practice when teaching basic com-
putation. Mercer and Miller (1992), found the Strategic Math
Series curriculum that uses CRA procedures and SIM using
a mnemonic strategy (Discover the sign, Read the problem,
Answer or draw and check, Write the answer; DRAW) to be
more effective than the traditional curriculum when teach-
ing students with disabilities to acquire, understand, and ap-
ply basic addition, subtraction, multiplication, and division.
Miller and Mercer (1993) replicated these findings with ele-
mentary students with SLD. Other research has shown CRA-
SIM to be effective in increasing performance with regard
to basic operations (Harris, Miller, & Mercer, 1995; Morin
& Miller, 1998), integers, fractions, and algebra (Maccini &
Hughes, 2000; Maccini & Ruhl, 2000; Witzel, Mercer, &
Miller, 2003).

In more recent research, CRA-SIM was shown to be ef-
fective in teaching complex addition and subtraction with
regrouping to students with disabilities as well as to stu-

dents at risk for mathematics failure. Flores (2009, 2010)
taught subtraction with regrouping to students experiencing
mathematics difficulty and students at risk for mathematics
failure using CRA-SIM. She used a multiple probe across
participants design. Instruction included CRA methods us-
ing explicit instruction and the DRAW mnemonic strategy.
Her results showed a functional relation between CRA-SIM
and positive learning outcomes for subtraction with regroup-
ing across all students.

Miller & Kaffar (2011) taught addition with regrouping
to students with learning difficulties in mathematics. They
compared instruction using CRA-SIM instruction with a tra-
ditional basal curriculum. The treatment group received 16
lessons of CRA-SIM including explicit instruction using the
CRA sequence and procedural strategy (Read the problem,
Examine the ones’ column, Note ones in the ones’ column,
Address the tens’ column, Mark tens in the tens’ column,
Examine and note hundreds and exit with a quick check;
RENAME). During the concrete and abstract levels, the stu-
dents solved problems using a place value mat that served
to assist in organizing manipulatives (base-ten blocks) and
pictures. Two lessons involved teaching mnemonic strategies
during the transition to the abstract phase. The comparison
group received 16 lessons from a traditional second grade
basal series. Students in the treatment group performed sig-
nificantly better in addition with regrouping than the com-
parison group. This study showed that CRA-SIM was more
effective than a basal curriculum.

Mancl et al. (2012) also used a multiple probe across
participants design to study the use of CRA-SIM to teach
subtraction with regrouping to students with SLD. The re-
searchers used CRA methods and the taught the RENAME
strategy during the transition phase. Through the CRA se-
quence of instruction, the students solved problems using a
place value mat, base-ten blocks, and pictures. Then, stu-
dents progressed to problem solving using numbers only.
Results indicated a functional relation between CRA-SIM
and increased accuracy in subtraction. Although CRA-SIM
has been extended to addition and subtraction, there is a lack
of research in the area of multiplication with regrouping.
Multiplication with regrouping involves application of con-
ceptual knowledge of numbers and operations in order for a
student to explain how or why particular procedures are used
in solving such problems. Students with SLD need interven-
tions that support the mathematical practices within CCSS,
providing conceptual understanding of operations while de-
veloping procedural knowledge and fluency. Therefore, the
purpose of this study was to use CRA-SIM to teach multipli-
cation with regrouping to students with SLD. The research
question was: What are the effects of CRA-SIM on the mul-
tiplication performance of students with SLD when solving
problems that include two-digit multipliers?

METHOD

Setting

The study took place in a special education resource class-
room at a rural elementary school in the Southeastern United
States. The researcher taught each student individually
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during his/her mathematics class scheduled with the special
education teacher outside of the general education classroom.
Instructional sessions were 25 minutes in duration 3 days per
week during which time the researcher administered a timed
probe and implemented instruction.

Participants

The participants were four elementary students who qual-
ified for special education services under SLD. The State
eligibility criterion includes a regression-based discrepancy
model, failure within a response-to-intervention framework,
or a pattern of strengths of weaknesses. Each student re-
ceived services for reading and mathematics. Mari and Jon
were in the fourth grade; Ed and Jack were in fifth grade.
They were chosen based on the following: (1) eligible for
special education services in the area of SLD; (2) fluent in
basic addition, subtraction, and multiplication as defined as
writing at least 45 correct digits per minute; (3) mastery of
multiplication with regrouping with problems that included
a one-digit multiplier as defined as writing 30 correct dig-
its in 2 minutes; and (4) inability to compute multiplication
with regrouping problems that included a two-digit multi-
plier as defined as less than 10 percent of problems cor-
rect. All students met this criterion. The students partially
completed two-digit multiplication problems by attending to
the digit in the ones’ place of the multiplier; error patterns
varied. Consistent with the recommendations for participant
descriptions by Rosenberg et al. (1993), the students’ eligi-
bility with model used, computation achievement, cognitive
functioning, and background are located in Table 1.

Materials

The assessment materials were probes that included 25 prob-
lems requiring multiplication with regrouping of 2 two-digit
numbers. There were four probes, sheets of paper with the
problems printed in 12-point font. Prior to the study, the re-
searchers developed four versions of multiplication probes
used for assessment during baseline, intervention, and main-
tenance. The researchers used four versions in order to
control for practice effects; the students received different
versions in different orders across sessions. During develop-
ment, the researchers collected data regarding reliability and
content validity. The problems within the probes were admin-
istered to college students to ensure that problems would be
completed consistently. There was a Cronbach’s Alpha Co-
efficient of r = .73 for probe items. For content validity, the
researchers computed the item-level content validity index
(I-CVI) through a process in which experts (three elemen-
tary mathematics teachers with at least 4 years of experience
and a Master’s degree) rated problems’ relevance to the skill.
The researchers divided these ratings by the total number of
experts (Lynn, 1976) yielding an I-CVI of 1.00, meaning that
the problems were highly relevant to the skill. In addition,
two teachers and one state department mathematics instruc-
tional specialist rated the same problems as easy, average, or
difficult for the typical elementary school student. The items

were rated as average. The I-CVI calculation provided ratio-
nale for the probes’ content. The ICVI showed that problems
were similar to those used for general assessment of multi-
plication with regrouping with regard to relevance and ease
of calculation.

Instructional materials for the CRA_SIM consisted of the
following: (1) an instructional manual created by the first
author that provided instructional procedures and suggested
scripts for each lesson, and an outline of teacher behaviors
for the provision of the advance organizer, guided practice,
independent practice, and provision of a post-organizer for
each lesson determined prior to the study; (2) student learn-
ing sheets for each lesson; (3) place value mats used during
concrete and representational instruction; and (4) base-ten
blocks used during concrete instruction. The student learning
sheets included three sections with problems used for teacher
demonstration, guided practice, and independent practice.
The learning sheet for lesson seven differed from the others;
it had the RENAME strategy printed in the middle of the
page. The place value mats were laminated pages used to
organize base-ten blocks or drawings when solving problems
at the concrete and representational levels; these mats were
not used during abstract level instruction. The place value
mat for concrete level instruction was a 36 × 36 inch sheet
which provided the student with space to organize base-ten
blocks. The place value mat for representational level in-
struction was a 16 × 16 inch sheet which provided the stu-
dent with space to organize drawings while solving problems.
The mats differed in size because base-ten blocks required
a larger amount of space than drawings. The larger mat re-
quired much table space, so when base-ten blocks were no
longer required, the students used the smaller mat because
it took less tabletop space. Both types of place value mats
were tables that had columns labeled for the ones’, tens’, hun-
dreds’, and thousands’ places. The columns were divided into
three rows, each shaded to visually differentiate multiplica-
tion by the multiplier digit in the ones’ place, tens’ place,
and total when both rows were added. Within each column
row, the cells were further divided into nine smaller cells for
grouping because one could form up to nine groups (of one,
ten, or hundred) without regrouping. A visual example of the
description above is provided in step 9 of Figure 1.

Procedures

Assessment

Prior to instruction, to establish baseline, students completed
timed (2-minute) probes. After instruction began, probes
were administered at the beginning of lessons prior to any
instruction until students reached the criterion for mastery.
The number of probes varied by student based on the number
of sessions given prior to mastery; the researchers gave 10
probes to Mari and Jon, 7 probes to Ed, and 12 probes to
Jack. After instruction ended, probes were administered to
assess maintenance. The teacher placed the probe in front of
the student and told him/her to complete as many problems
as he/she could until told to stop. The teacher told the stu-
dent to begin, started a timer, and asked the student to stop
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TABLE 1
Student Demographics

Cultural Back- Eligibility Hours Served Cognitive Ability Mathematics Computation
Student Age Grade ground (model) per Week (IQ)a Achievementb

Mari 10 4 African American Specific Learning
Disability (response to
intervention)

10 90 86

Jon 10 4 Latino Specific Learning
Disability
(discrepancy)

10 105 86

Ed 11 5 White Specific Learning
Disability
(discrepancy)

10 103 80

Jack 11 5 White Specific Learning
Disability
(discrepancy)

10 101 72

a = standard score reported in most recent special education evaluation or re-evaluation.
b = standard score Operations subtest Key Math 3 Diagnostic Assessment (Connolly, 2007)

after 2 minutes. Baseline procedures involved the administra-
tion of probes only. Instruction began when the first student
demonstrated a stable baseline, as defined as at least five data
points with the last three data points varying no more than 20
percent from the mean of the baseline data path. The other
students remained in baseline until the first student wrote at
least 25 correct digits on a probe. The researchers chose the
criterion of 25 digits correct for phase change (rather than
30 digits) because that amount would show a clear increase
over baseline and allow the study to be completed without
interruption via annual testing, field trips, festivals, and so
forth during the school year. Digits correct were defined as
the number of digits written below the horizontal line be-
neath the original problem (the answer, thus), as well as all of
the digits used to calculate the problem. This metric showed
small increments in learning progress across all of the pro-
cedural steps (Hosp, Hosp, & Howell, 2007). For example,
if the student completed portions of the algorithm correctly,
but failed to arrive at the correct answer, this metric showed
an increase in digits correct. Although percentages of cor-
rect answers may be more common within general education
assessment, the researchers chose digits correct because it is
the most sensitive measure of student progress toward fluency
(Keller-Margulis, Shapiro, & Hintze, 2008).

Concrete Lesson Procedures

Across all phases of instruction, lessons were implemented
according to the explicit instruction model with an advance
organizer, teacher demonstration, guided practice, indepen-
dent practice, and a post-organizer. The first three lessons in-
volved instruction at the concrete level using base-ten blocks.
The concrete level is shown through pictures of one example
problem in Figure 1.

During each concrete level instructional lesson, the
teacher modeled two problems, only asking students to pro-
vide information that they already knew or repeat information
stated by the teacher. The teacher conducted guided practice
with two problems, working together with students to solve

problems in a back and forth process. The students solved two
problems for independent practice. The teacher did not assist
in independent problem solving, but checked the students’
work and provided verbal feedback when students finished
the problems. The amount of time and effort required for
solving problems at the concrete level determined the num-
ber of problems within lessons. The problem solving steps
are summarized in Table 2 and a more detailed description
follows.

The teacher reviewed the reverse rule or commutative
property; employing this property allowed for more efficient
computation and manipulation of objects (e.g., four groups of
20 rather than 20 groups of four). The teacher read the prob-
lem aloud and represented the multiplicand (top number) on
the place value mat as shown in the first portion or step of
Figure 1. Beginning in the ones’ column, the teacher repre-
sented problem, making the appropriate number of groups
(second step of Figure 1.). The teacher evaluated the answer
and if there were ten or more ones, regrouping occurred by
exchanging 10 ones for 1 tens’ block which was placed in
the tens’ column (third step of Figure 1). The teacher also
noted regrouping on the written problem. Next, the tens’
place of the multiplicand was multiplied by the ones’ place
of the multiplier and the teacher represented this problem on
the place value mat (fourth step of Figure 1). The teacher
evaluated the answer, and if there were ten or more tens,
regrouping occurred by exchanging 10 tens for 1 hundreds’
block which was placed in the hundreds’ column (fifth step
of Figure 1). The teacher noted numbers in the written prob-
lem. Before multiplying by the tens’ place of the multiplier,
the teacher/student crossed out the number in the ones’ place
of the multiplier and wrote a zero in the ones’ place under-
neath the first line of answers within the problem. Next, the
teacher multiplied the number in the ones’ place of the mul-
tiplicand by the number in the tens’ place of the multiplier.
The teacher employed the commutative property for ease of
problem solving. The teacher represented the problem using
base-ten blocks (sixth step of Figure 1). The teacher evalu-
ated the answer for regrouping, and if there were ten or more,
10 tens were exchanged for a hundreds’ block which was
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Step 1. Represent the multiplicand (top number) with base ten blocks.

Step 2. Examine the ones’ place. Multiply one’s place of multiplicand (top) by multiplier 

(bottom); five groups of five.

Step 3. Note the ones. If there are ten or more, go next door. Remove two groups of ten ones and 

add two tens to the to the tens’ place. Note five ones. * Pictures with dashed lines represent 

objects that were used in regrouping, removed and exchanged for larger number.

Step 4. Address the tens’ column. Use the reverse rule (associated property, e.g., 5x40 rather 
than40x5), Make five groups of four tens. 

Step 5. In noting the tens, if there are ten or more, go next door. Remove two groups of 10 tens 

and add two hundreds to the hundreds’ place. Mark the 2 tens. Examine and note the two 

hundreds. Begin again in the tens’ place of the multiplier.

FIGURE 1 Procedures for solving two-digit by two-digit multiplication problems at the concrete level.

placed in the hundreds’ place on the mat. The teacher noted
regrouping on the written problem (seventh step of Figure 1).
The numbers in the tens’ places of the multiplicand and the
multiplier were multiplied (e.g., 40 groups of 20). This was
an unwieldy problem using manipulatives, so the teacher
solved it using tens’ blocks one time for demonstration and
then taught the following short cut. The teacher demonstrated

that 40 groups of 20 was the same as four groups of two hun-
dreds (eighth step of Figure 1). The teacher demonstrated this
concept, guided the students in demonstrating the concept,
and the students demonstrated this independently. The stu-
dents were satisfied that using hundreds’ blocks to solve this
problem was easier than using many groups of tens’ blocks.
Once represented and solved, the teacher evaluated the
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,Step 6. Write a zero in the ones’ place. Examine the tens. Use the reverse rule (associated 

property) and make five groups of 2 tens.

Step 7. Regrouping is required. Remove 10 tens and add one hundred. Mark the tens’ place.

Step 8. Address the hundreds’. Making 40 groups of 20 is the same as four groups of two 
hundreds. Mark the hundreds’ place (nine).

Step 9. Add the numbers and examine the problem to ensure that blocks match the numbers.

FIGURE 1 Continued.

answer for regrouping. If there were ten or more hundreds,
they were exchanged for a thousands’ block. The teacher
wrote or noted the numbers. Finally, the teacher added the
answers obtained by multiplying by both numbers in the
multiplier. She used the place value mat and written prob-
lem; when adding each column, regrouping was necessary at
times as seen in the hundreds column within Figure 1. Finally,
the teacher compared the manipulatives on the mat with the
answer in the written problem (ninth step of Figure 1).

Representational Lesson Procedures

The procedures for instruction at the representational level
(lessons four through six) involved drawings rather than base-
ten blocks. Ones were small tallies drawn on a horizontal
line. Tens were long vertical lines. Hundreds were squares,
and thousands were cubes. Instructional procedures regard-
ing modeling, guided practice, and independent practice were
the same for representational level instruction as for concrete
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FIGURE 2 Completed problem at the representational level.

level instruction. The teacher and students represented re-
grouping by circling portions of drawings when exchanged
(e.g., 10 ones circled and 1 vertical line added to tens’ col-
umn). The teacher modeled three problems, guided three
problems, and the students completed three problems inde-
pendently. A completed problem at representational level is
shown in Figure 2.

Abstract Lesson Procedures

The seventh lesson involved teaching a strategy for solving
regrouping problems. The strategy was: (1) Read the prob-
lem; (2) Examine the ones; (3) Note the ones; (4) Address the
tens; (5) Mark the tens; and (6) Examine the hundreds and
note the hundreds; exit the first line and begin again or add
and check (RENAME). Instruction with the RENAME strat-
egy involved verbal rehearsal until the student could look at
the first letter of the mnemonic and state the strategy step. Ab-
stract level instruction (lessons eight through ten) involved
the use of numbers only and the RENAME strategy. Using
the explicit instruction steps, the teacher and student solved
problems with the RENAME mnemonic within sight, but no
other aids. During lessons eight through ten, the teacher mod-
eled two problems, guided three problems, and the students
solved four problems independently.

Maintenance and Generalization

Two weeks after the students mastered regrouping and in-
struction ended, probes were administered to measure main-
tenance. Additional maintenance probes were given each
week following for two additional weeks, but assessment
across students differed since instruction was staggered. Jon
completed maintenance probes 2 weeks, 3 weeks, and 4
weeks after instruction. Ed completed maintenance probes
2 weeks and 3 weeks following. The researchers adminis-
tered a generalization probe at the end of the study. The
generalization probe consisted of regrouping problems with
a three-digit multiplicand and the two-digit multiplier; in-
struction did not include these problems, but involved similar
procedures.

Treatment Fidelity, Inter-observer Agreement,
and Social Validity

Fidelity measures met or exceeded those recommended by
Horner Carr, Halle, McGee, Odom, and Wolery (2005). The
second and third authors collected treatment fidelity data
through live observations using a checklist of teacher be-
haviors associated with probe administration and CRA-SIM
instruction. The observer completed checklists two out of
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three (66 percent) sessions per week; therefore data were
collected across all students, during baseline, and across all
instructional phases (concrete, representational, and abstract
levels). The researchers calculated treatment fidelity of 100
percent throughout the study.

The researchers checked probes for consistency through
inter-scorer accuracy. A second observer scored 50 percent
of all probes during baseline and instructional phases. The
researchers calculated inter-scorer agreement by adding the
number of agreements and dividing that sum by the total
number of agreements and disagreements. Agreement was
100 percent for Mari’s probes, 100 percent agreement for
Jon’s probes, 97 percent agreement for Jack’s probes, and
100 percent agreement for Ed’s probes.

The researchers assessed social validity using open-ended
written questionnaires distributed to the resource teacher and
read to the students before and after the study. The items on
the questionnaires asked about the students’ multiplication
performance, need for intervention, thoughts about CRA-
SIM, students’ performance after the study, and recommen-
dations for others. On the questionnaire given prior to the
study, the students and their teacher reported the following:
(1) multiplication with regrouping was difficult, (2) students
performed poorly in that area, and (3) there was a need for ad-
ditional instruction. After the study, the students and teacher
reported: (1) multiplication with regrouping was easy and
fun, (2) performance improved, and (3) they would partici-
pate again and recommend CRA-SIM to others.

Research Design

The researchers used a multiple probe across students design
to investigate the presence of a functional relation between
CRA-SIM instruction and students’ multiplication with re-
grouping performance. All students began baseline and the
first student, Mari, moved from baseline to instruction af-
ter demonstrating stable performance. Jon began instruction
after Mari reached the criterion for phase change (25 cor-
rect digits) and his baseline performance was stable. Ed and
Jack were enrolled in the same class and, because of schedul-
ing, moved from baseline to intervention together after Jon
reached the criterion for phase change; they demonstrated
stable baselines. In order to evaluate the presence of a func-
tional relation, researchers inspected student data with atten-
tion to the level, trend, and overlap of data paths.

RESULTS

Baseline

Baseline data were collected across all students and data
paths remained stable for all students prior to instruction.
The data points on each graph represent student performance
on probes administered prior to instructional lessons across
all phases of CRA-SIM. The first data point for each student
represents his/her performance on the probe given prior to
instruction for the second lesson. The results for all students
are located in Figure 3.
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FIGURE 3 Results for Mari, Jon, Ed, and Jack.

Mari’s baseline data ranged from 12 to 14 correct digits
with a level of 13. Jon’s baseline data ranged from 10 to 13
with a level of 11 correct digits. Ed’s baseline data ranged
from 17 to 20 with a level of 18 correct digits. Jack’s baseline
ranged from 9 to 13 with a level of 11 correct digits.

Intervention

After an initial decrease in performance, Mari demonstrated
an increasing data path that ranged from 10 to 37 correct

digits with a level or mean of 21 during intervention and
40 percent overlap between phases. She reached mastery after
11 probes. Mari completed a maintenance probe 1 week af-
ter instruction; the researchers administered this probe early
because she was moving to another school. Additional main-
tenance and generalization data were not collected.

Jon’s probes ranged from 2 to 36 with a level or mean
of 18 during intervention and 40 percent overlap between
baseline and intervention. Jon maintained his performance,
writing 38 correct digits 2 weeks after instruction ended, 36
correct digits 3 weeks after instruction ended, and 44 digits
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after 4 weeks of no instruction. Four weeks after instruction,
Jon completed a generalization probe and wrote 26 correct
digits.

Ed’s performance remained similar to baseline in the con-
crete stage. His performance increased quickly, meeting cri-
terion after the first abstract lesson using numbers only. Ed
had seven probes to the criterion with a level or mean of 30
during intervention and 29 percent overlap between baseline
and intervention. Ed’s data path showed an increasing trend
with a range from 17 to 59. He maintained his performance,
writing 50 correct digits 2 weeks after instruction and 59
digits after 3 weeks. Ed completed a generalization, writing
44 correct digits.

Jack met criterion after 12 probes with a level of 16 and 58
percent overlap between phases. Two weeks after instruction,
he increased performance, writing 50 correct digits. Jack
completed a generalization probe 2-weeks after maintenance,
writing 32 correct digits.

Effect Size

The researchers calculated Tau-U for each student as well
as overall. The Tau-U procedure combines analysis of non-
overlapping data points between phases with the intervention
phase trend while accounting for any trend within baseline
(Parker, Vannest, Davis, & Sauber, 2011). This procedure
uses statistical analysis to compare student performance be-
tween phases, but also accounts for trends within baseline,
which could potentially discount later trends observed within
intervention (e.g., if multiplication performance increased
prior to intervention, subsequent increases during interven-
tion would be less meaningful, or attributable to the inter-
vention). The use of statistical analysis regarding effect size
within single case design allows for analysis and synthesis
of multiple single case studies for the purpose of making
decisions about practices as evidence-based. No significant
trends occurred during baselines. Mari’s performance indi-
cated a moderate effect (Tau-U = 0.6). In comparing base-
line and intervention phases Jon’s performance indicated a
moderate effect (Tau-U = 0.6). Ed’s performance indicated
moderate effect (Tau-U = 0.7). A comparison of Jack’s base-
line and intervention phases revealed a small effect (Tau-U
= 0.1). Overall, the intervention had a moderate effect across
all students (Tau-U = 0.5).

Computation Patterns Observed

Mari, Jon, and Jack demonstrated similar patterns across the
implementation of the intervention. Each student’s perfor-
mance decreased or overlapped with baseline. After instruc-
tion began, the students ceased using their previous erro-
neous procedures. However, the students did not have the
skills or knowledge necessary for correctly solving problems
without manipulatives or drawings. New error patterns de-
veloped in some cases; however, these errors appeared to
reflect some new knowledge of numbers and operations. The
students worked slowly, attempting fewer problems, but ap-
peared to be more thoughtful. Over time, fluency improved

to 30 correct digits. Patterns of computation across the study
are shown in Figure 4.

DISCUSSION

The researchers proposed to investigate the effects of CRA-
SIM in teaching multiplication with regrouping to students
with SLD. Visual analysis showed a functional relation with
increased fluency to criterion at three different points in time
with four students. The students demonstrated maintenance
of their skills over time when given problems without assis-
tance or other aids such as manipulative objects or pictures.
Because Mari moved away, only three students had the oppor-
tunity to show generalization. When presented with a near
generalization task, two students demonstrated fluency by
writing more than 30 correct digits. Jon wrote 26 correct
digits, demonstrating some generalized learning.

The calculations of effect size show moderate strength
of CRA-SIM. The amount of overlap between baseline and
intervention phases affected these findings. The amount of
overlap may be viewed as problematic; however, the overall
goal of this intervention was fluent computation, a skill devel-
oped over time rather than immediately. Immediacy of effect
is not necessarily the only hallmark of effective interven-
tions; furthermore, what this intervention may have lacked
in immediacy of effect was balanced with the development
of fluency and generalization to a similar task. The results
of this study are logical based on the design of CRA-SIM
instruction. The probes assessed accuracy and efficiency in
computation; instruction guided the students toward fluency,
with an emphasis on conceptual understanding during the
concrete and representational levels of instruction (lessons
one through six). It would be expected that fluency would
develop after attainment of conceptual understanding. In ad-
dition, fluency would logically be demonstrated after instruc-
tional practice using numbers only (abstract level). Therefore,
even though the results do not show immediate powerful ef-
fects, the students’ demonstration of learning, maintenance,
and generalization should not be discounted. Furthermore,
the research design highlights this effect because it involves
frequent measures of behavior (daily for this study). Had a
different design been implemented, such as one with pre-
and postassessments, this learning trajectory would not have
been shown; however data regarding learning are important
for researchers and practitioners in future implementation.
That said, it is important in the future to conduct experimen-
tal research studies in which implementation of CRA-SIM is
compared to other methods for teaching multiplication with
regrouping skills.

The findings are significant because they begin a new line
of CRA-SIM research for students with SLD. This study is
different from previous CRA-SIM research in that the phys-
ical manipulation of large numbers of objects and problem
solving procedures were more complex than those required
for other operations in the literature (Flores, 2009, 2010;
Harris et al., 1995; Mancl et al., 2012; Miller & Kaffar, 2011;
Morin & Miller, 1998). Nonetheless, the students completed
all levels of instruction without difficulty. A critical instruc-
tional component was the place value mat that assisted in
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Changes in computation performance for Mari (Bold numerals represent correct digits.)

Baseline Intervention
Concrete Level

Intervention
Representational Level

Intervention
Abstract Level

12 6 13 3 12 4 124 5
x 4 3 x 2 4 x 2 4 x 2 5
7 8 1 6 2 14 9 6 2 2 5

+ 8 0 + 9 0 0
5 7 6 1, 1 2 5

Changes in computation performance for Jon (Bold numerals represent correct digits.)

Baseline Intervention
Concrete Level

Intervention
Representational level

Intervention
Abstract Level

15 3 12 3 13 3 15 4
x 1 4 x 2 4 x 2 5 x 2 3

6 2 9 2 1 6 5 11 6 2
4 0 + 6 6 0 + 1 0 8 0

7 2 2 1, 1 4 2
Changes in computation performance for Ed (Bold numerals represent correct digits.)

Baseline Intervention
Concrete Level

Intervention
Representational level

Intervention
Abstract Level

3 5 2 3 13 3 14 4
x 2 4 x 2 4 x 2 5 x 2 3

6 20 8 12 1 6 5 11 3 2
+ 6 6 0 + 8 8 0
8 2 2 1, 0 1 2

Changes in computation performance for Jack (Bold numerals represent correct digits.)

Baseline Intervention
Concrete Level

Intervention
Representational level

Intervention
Abstract Level

3 3 13 3 15 4 24 4
x 2 4 x 2 4 x 2 3 x 2 5

6 12 3 2 1 9 2 12 2 0
+ 6 6 + 1 0 8 0 + 8 8 0

9 8 1 1 9 2 1, 1 0 0

FIGURE 4 Changes in computation performance across probes for each student.

organizing base-ten blocks and drawings. The mat’s utility in
the current study is consistent with the findings of other CRA-
SIM research involving operations with regrouping (Mancl
et al.; Miller & Kaffar).

Limitations and Future Research

Although the CRA-SIM intervention implemented in this
project was effective for the participating students, the study
was not an experimental study, and does not, therefore,
demonstrate the effectiveness of CRA-SIM over and above
the effects of additional instruction alone. It is possible that
the students improved because they received additional 1:1
instruction on multiplication with regrouping. To demon-

strate the effectiveness of the CRA-SIM specifically, it would
be important to conduct a randomized control trial study.
Nonetheless, our goal was to illustrate the implementation
of the CRA-SIM approach for multiplication with regroup-
ing, and to demonstrate in what way it was effective for our
participating students.

A second limitation of this study was that instruction was
delivered by the researcher. Future research should be con-
ducted in authentic settings in which a special education
teacher implements instruction. Although this is a limitation,
the method could be implemented by a classroom teacher in a
small setting. The researcher, a special education teacher, fol-
lowed written procedures developed prior to the study which
another teacher could follow. Another limitation was the size
of instructional groups; future research should investigate the
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effects of instruction with group sizes that are more realistic
for a resource setting. Instructional groups were small based
on availability of students, their classroom schedules, and
the research design. Other CRA-SIM studies have been con-
ducted with larger groups, and it seems realistic that larger
groups would be successful. However, instruction using the
concrete objects and drawings is likely to be more success-
ful in group sizes in which the teacher can easily interact
with students and monitor their activities. Generalization of
findings is another limitation. CRA-SIM was effective for
the four students in this study, but additional replication
is needed to demonstrate its efficacy for others. Future re-
search should include larger groups of students with varied
characteristics.

Implications for Practice

This study provides initial evidence that CRA-SIM is ef-
fective supplemental instruction for students with SLD. Stu-
dents made progress with a small portion of class time and
materials readily available in elementary schools. In typi-
cal classrooms, mathematics instruction involves differenti-
ation using various instructional models that allow for small
group instruction such as station teaching or collaborative
approaches. Based on the results of this study, the use of
CRA-SIM instruction would be appropriate for students who
had not been successful using other methods, but needed an
explicit method which scaffolds instruction in the traditional
multiplication with regrouping algorithm that emphasizes
conceptual understanding. CRA-SIM instruction would also
be appropriate for students who make computation errors
because they had been introduced to the standard algorithm
without firm understanding of numbers and operations. This
study allowed for learning aligned with the CCSS (National
Governors’ Association Center for Best Practices & Council
of Chief State School Officers, 2010), demonstrating under-
standing by representing numbers and operations. CRA-SIM
also provided remediation of skills previously taught using
general education curriculum materials in the general edu-
cation and resource setting. Prior to CRA-SIM, the students
lacked conceptual knowledge of number systems and oper-
ations. After instruction, the students maintained learning
over time. CRA-SIM instruction may be an effective method
of increasing students’ access to CCSS.
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